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ABSTRACT

Aims. We investigate two-dimensional effects on the evolution of impulsively-generated slow magnetoacoustic waves in magnetic
arcades of the solar corona.
Methods. We used a two-dimensional box model of a coronal arcade, neglecting the effects of gravity and magnetic curvature. Ideal
finite-β magnetohydrodynamic equations were employed. The plasma was taken to be uniform, penetrated by a straight and uniform
magnetic field. We applied line-tying boundary conditions at the magnetic footpoints.
Results. Running and standing slow magnetoacoustic waves develop across the magnetic field due to the reflection from the footpoints
in the arcade. The perpendicular group speed is lower than both sound and Alfvén speeds. The speed grows with the increase in
plasma-β, which is consistent with analytical theory. Slow magnetoacoustic pulse perturbs the magnetic field and current density; this
effect is stronger for higher amplitudes. Standing waves spread across the field, forming a characteristic phase-mixing pattern of anti-
parallel flows. The two-dimensional effects are more pronounced for higher β. Our results confirm the plausibility of the interpretation
of the observed evolution of two-ribbon flares in terms of slow magnetoacoustic waves in magnetic arcades.
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1. Introduction

Slow magnetoacoustic waves are one of the most studied mag-
netohydrodynamic (MHD) wave modes in the solar corona (see
De Moortel 2006; Roberts 2006; De Moortel 2009, for recent
reviews). Slow waves are detected in open and closed magnetic
structures in the form of propagating (e.g. Verwichte et al. 2010)
and standing (e.g. Wang 2011) waves. In a low-β plasma of the
corona, slow magnetoacoustic waves propagate almost parallel
to the magnetic field, and are mainly characterised by the pertur-
bations of the plasma density and field-aligned flows. Because
slow waves are essentially compressible, they are usually de-
tected with imaging instruments as variations of the emission
intensity, propagating along the presumed direction of the mag-
netic field (e.g. De Moortel et al. 2002). In some cases slow
waves are also detected with spectral instruments that investi-
gate the Doppler shift of coronal emission lines (e.g. Wang et al.
2003; Erdélyi & Taroyan 2008; Wang et al. 2009; Mariska &
Muglach 2010; Van Doorsselaere et al. 2011). Typical periods of
observed coronal slow waves are several minutes, and, in agree-
ment with the MHD wave theory, the measured projected phase
speed is typically subsonic.

The interest in coronal slow waves is primarily linked with
their seismological potential. In particular, propagating slow
waves were used for probing fine, sub-resolution structuring
of active regions (King et al. 2003) by the apparent decrease
in the correlation of the propagating disturbances seen in dif-
ferent EUV bandpasses. Coordinated imaging and spectral ob-
servations of standing slow waves led to the estimation of the
magnetic field strength in the waveguiding loops (Wang et al.
2009). Recently, the spectroscopically measured phase lag be-
tween the temperature and density perturbations in propagating

slow waves was used to estimate of the effective adiabatic in-
dex γ (Van Doorsselaere et al. 2011). In addition, the recently
established phenomenological relationship between sunspot os-
cillations and quasi-periodic energy releases in solar flares (Sych
et al. 2009), including slow waves as the signal carrier, opens
up interesting perspectives for the seismological study of flaring
sites and flare-triggering mechanisms. Very recently, Nakariakov
& Zimovets (2011) demonstrated that slow magnetoacoustic
waves could be responsible for the observed progression of flar-
ing energy releases along a magnetic neutral line (and hence
across the equilibrium magnetic field) in two-ribbon flares. It
was shown that in coronal arcades slow magnetoacoustic waves
propagate across a magnetic field at a group speed significantly
lower than both the sound and Alfvén speeds, and that this be-
haviour was well-consistent with the observed evolution of two-
ribbon flares. We aim to contribute to the understanding of this
effect. In our numerical simulation we did not consider the whole
“chain” of the physical processes leading to the progression of
the flare along the arcade, including the “ignition” of magnetic
reconnection by a slow pulse. Instead, we considered an individ-
ual act of the process, one of the two key building blocks of it:
the “delivery” of the information about an energy release burst
to another possible point of the release, at some distance along
the axis of the arcade. We generalised the qualitative estimates
of Nakariakov & Zimovets (2011) for broadband slow pulses of
finite amplitude.

The traditional approach to the theoretical description of
slow waves in the solar corona is a simple one-dimensional
model, which restricts attention to the field-aligned motions
only and allows one to study in detail effects of stratification,
thermal conduction, viscosity, radiation, flux tube divergence
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and nonlinearity (Ofman et al. 1999; Nakariakov et al. 2000;
Ofman & Wang 2002; De Moortel & Hood 2004; Nakariakov
et al. 2004; Taroyan et al. 2005; De Moortel & Bradshaw 2008;
Taroyan & Bradshaw 2008). Essentially, this model reduces slow
magnetoacoustic waves to acoustic waves, which dramatically
simplifies the analysis. However, this approach excludes some
important effects from the consideration, such as the perturba-
tions of the magnetic field in the wave. The magnetic effects may
be important, because they modify, e.g., the propagation speed
of the slow wave guided by a magnetic flux tube. Indeed, the
analysis of slow wave dispersion relations derived in the mag-
netic cylinder model (e.g. Edwin & Roberts 1983) shows that
the propagating speed of slow waves is actually subsonic and
is affected by the strength of the magnetic field. This depen-
dence was, in particular, used for the magnetic field diagnos-
tics by Roberts (2006) and Wang et al. (2009). The majority
of two-dimensional studies of coronal slow waves (e.g. Selwa
et al. 2007; Ogrodowczyk et al. 2009; Konkol et al. 2010) ad-
dressed the effects of stratification and magnetic field curvature,
and hence were carried out in the plane perpendicular to the solar
surface. On the other hand, the study of the slow wave progres-
sion in the direction perpendicular to the magnetic field in, e.g.,
two-ribbon flare arcades, requires their modelling in the plane
parallel to the solar surface.

In this paper we present parametric numerical studies of
oblique effects associated with slow magnetoacoustic waves in
coronal arcades. Both running and standing waves are consid-
ered. We aim to develop the study of Nakariakov & Zimovets
(2011) by accounting for the effects of broadband spectrum and
nonlinearity. This paper is organised as follows. The analytical
model and numerical methods are described in Sect. 2. Results
of the simulations are presented and discussed in Sect. 3. We
conclude with a summary of the main results in Sect. 4.

2. Numerical setup

2.1. Magnetohydrodynamic equations and numerical
methods

We performed numerical simulations in a two-dimensional ar-
cade filled in with a uniform plasma of constant temperature.
We neglected gravity and non-adiabatic effects. Accordingly, we
used the ideal magnetohydrodynamic equations to model the so-
lar plasma:

∂�

∂t
+ ∇ · (�V) = 0, (1)

�
∂V
∂t
+ �(V · ∇)V = −∇p +

1
μ

(∇ × B) × B, (2)

∂B
∂t
= ∇ × (V × B), (3)

∂p
∂t
+ V · ∇p = −γp∇ · V, (4)

∇ · B = 0, (5)

where � is the mass density, p is the gas pressure, B is the mag-
netic field, V is the flow velocity, μ is the magnetic permeability
and γ = 5/3 is the ratio of specific heats.

Equations (1–5) are numerically solved with the Lagrangian-
remap code Lare2d (Arber et al. 2001). Lare2d operates by tak-
ing a Lagrangian predictor-corrector time step and after each
Lagrangian step all variables are conservatively re-mapped back
onto the original Eulerian grid using Van Leer gradient limiters.
The code was designed for the simulation of nonlinear dynamics

Fig. 1. Magnetic arcade of a two-ribbon flare (on the left) and its model
(on the right) used during simulations. The black lines illustrate the
magnetic field lines. The red regions in the left panel show the flare rib-
bons while we implemented line-tying boundary conditions at the left
and the right boundary of simulation region. The yellow dashed lines
show the race of the fastest slow magnetoacoustic waves. The red star
shows the position of ignition of slow wave. The yellow stars show the
positions of the secondary energy releases induced by the slow magne-
toacoustic pulses.

of low-β (the ratio of the gas pressure to the magnetic pressure)
plasmas with steep gradients. In our studies we simulated the
plasma dynamics in a domain (−L, L) × (−5L, 5L) where L is a
half-width of the arcade, covered by 400× 1000 grid points. We
performed grid convergence studies to check the convergence of
the numerical results.

2.2. The equilibrium and initial perturbation

We begin with an equilibrium that corresponds to a “box” model
of a two-dimensional magnetic arcade (see Fig. 1). The arcade is
considered as a sheet formed by the family of the magnetic field
lines that link the ribbons of the arcade. Locally, the field lines
are parallel to the sheet. In the model, the sheet is considered
as a plane. The magnetic field is straight and uniform B0 along
x direction, and perpendicular to the arcade footpoints. We as-
sumed that the length of the field lines was 2L. The equilibrium
plasma density � and the plasma temperature T were taken to
be constant everywhere. During the simulation we changed the
value of plasma-β, choosing different values of sound speed cs
ranging from 0.5VA to 0.8VA, where VA is the Alfvén speed. We
set line-tying boundary conditions along z direction at x = ±L,
while zero gradients were applied at the boundaries of the com-
putational domain at z = ±5L.

We aimed to study impulsively excited slow waves in the
simulation region. We considered the evolution of running and
standing slow magnetoacoustic waves. To trigger a running wave
we used an initial pulse in the temperature, localised somewhere
in the arcade,

T (x, z) = Ta exp

[
− (x − x0)2 + (z − z0)2

w2

]
+ T0, (6)

where T0 is an equilibrium value of temperature, Ta is the am-
plitude of the initial pereturbation and w is its width. We chose
two positions of the initial pulse: at the top x0/L = z0/L = 0
and at the footpoints x0/L = ±1, z0/L = 0, of the arcade, corre-
sponding to the apex and footpoint heating, respectively. We also
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Fig. 2. Snapshots of the development of a slow magnetoacoustic pulse
excited at the apex of a magnetic arcade for β = 0.3. The x-component
of velocity, parallel to the equilibrium magnetic field, is shown at times
t = 15 s (top left panel), t = 37.5 s, (top right panel) before the re-
flection from the footpoint, and at t = 45 s, (bottom left panel) and
t = 75 s (bottom right panel) after the reflection. The pulse is excited by
a localised increase in the plasma temperature given by Eq. (6), where
Ta = 0.1T0 and w = 0.1. The spatial coordinates are measured in units
of L, which is the half width of the arcade. The panels show half of the
computational domain, from the apex x = 0 to the footpoint x = L.

considered the evolution of a standing wave (e.g. Nakariakov
et al. 2004), localised in the direction perpendicular to the field.
We set the perturbation in the x (parallel to the field) component
of the velocity:

Vx(x, z) = A0 sin (kx) exp

[
− (z − z0)2

w2

]
, (7)

where k is the wave number prescribed by the boundary con-
ditions. In that part of our study, we restricted our attention to
the excitation of second harmonic of the slow standing wave,
with k = 2π/L. In our studies we demonstrated that the slow
pulse (even of a finite amplitude) can indeed progress across the
field, reaching the possible site of the next act of reconnection
at a certain distance from the initial position along the arcade
(Nakariakov & Zimovets 2011). The second “building block” of
the model, triggering of the other act of magnetic reconnection
by the slow wave, was not addressed in the present paper but our
work is a very important step towards the full modelling of the
whole chain of the processes involved.

3. Numerical results

3.1. Propagating pulses

Consider the development of a pulse with an increased temper-
ature, initially localised in the arcade. After the excitation, the
pulse splits into two slow magnetoacoustic pulses, which propa-
gate mainly along the magnetic field in both directions, towards
the footpoints. At the initial position remains a non-propagating
entropy mode. A part of the energy also goes to the fast mag-
netoacoustic waves, propagating mainly across the field, in the
directions parallel to the footpoints.

Figure 2 shows two-dimensional snapshots of the field-
aligned velocity perturbations Vx, which represent the slow wave
at different instants of time. The initial position of the pulse is at
the arcade apex. The panels show only a half of the computa-
tional domain in the direction along the field to the right from

Fig. 3. Snapshots of the development of a slow magnetoacoustic pulse
excited at the footpoint of a magnetic arcade for β = 0.3. The x compo-
nent of velocity Vx is shown at times t = 7.5 s (top left panel), t = 15 s,
(top right panel), t = 22.5 s, (bottom left panel) and t = 30 s (bottom
right panel). To excite the slow wave, we used the same parameters for
the initial pulse as in Fig. 2.

Fig. 4. Dependence of the perpendicular group speed of a slow magne-
toacoustic pulse on the plasma-β. The stars correspond to the analytical
estimate from the dispersion relation, while squares and triangles repre-
sent numerical results for Ta = 0.1T0 and Ta = 0.8T0, respectively. The
analytically calculated points are fited with a linear function (the solid
line).

the apex. Evidently, the slow pulse is reflected at the footpoint
and returns to the apex. The direction of the parallel velocity
perturbation changes the sign after the reflection. This propaga-
tion is accompanied by a gradual diffusion of the pulse across
the magnetic field, and hence along the axis of the arcade. The
initially Gaussian pulse gradually attains a “fork-like” shape.
This scenario is consistent with the analytical results obtained
in Nakariakov & Zimovets (2011). Indeed, the two-dimensional
slow magnetoacoustic pulse evolves according to the dispersion
relation: the highest perpendicular group speed is reached in the
direction oblique to the magnetic field, hence the fork-like shape
of the pulse. A pulse initially located at the footpoints of the ar-
cade shows a very similar evolution (Fig. 3): the pulse, excited
at x = L propagates to the left, towards the apex, and gradually
diffuses across the field, forming the fork-like structure.

According to the theory (see Fig. 3 of Nakariakov &
Zimovets 2011), the perpendicular group speed grows with the
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plasma-β. Figure 4 illustrates the dependence of the perpendicu-
lar group speed Vperp

g of a slow pulse upon the plasma parameter
β. The speed was estimated as the ratio of the distance between
the edge, defined by width of the initial pulse, and the point on
the z = 0 line that the “prong” of the reflected pulse reaches first,
to the travel time. We compared the numerical results with the
perpendicular group speed obtained from the slow wave disper-
sion relation (Goedbloed & Poedts 2004):

ω2 = 0.5[(c2
A + c2

s )(k2
x + k2

z )

−
√

(c2
A + c2

s )(k2
x + k2

z )2 − 4c2
s c2

Ak2
x(k2

x + k2
z )], (8)

where ω, kx and kz are the angular frequency, and the parallel
and perpendicular wave numbers, respectively, and cA and cs are
the Alfvén and sound speeds. The perpendicular group speed
Vperp

g = dω/dkz calculated for kx = 2π/L is shown in the figure,
too. The analytical estimation is qualitatively consistent with the
numerical results. The quantitative discrepancy can be attributed
to the difficulties in comparing essentially broadband numeri-
cal results with essentially monochromatic analytical estimation.
The problem is connected with the ambiguity in the definition of
the wave travel distance. Depending on what are taken as the ini-
tial and the end positions of the pulse (e.g. the centres of weight,
leading and/or trailing slopes, etc.), the travel distance and hence
the apparent speed are different. However, qualitatively the re-
sults should be consistent with the values given by dispersion
relation. The discrepancy also will decrease with the increase in
the travel distance.

Clearly, a compressible pulse should excite both slow and
fast magnetoacoustic waves. The slow wave propagates mainly
along the field, while the fast one does it mainly across the field.
The relative strength of the excited magnetoacoustic pulses is
determined by the excitation conditions. In our study, the lo-
calised pulse of the increase in the temperature is seen to result
mainly in the slow wave. However, the fast wave is excited, too.
Figure 5 illustrates profiles of V2

x +V2
z , which are associated with

the fast and slow waves, at t = 17.5 s after the impulsive exci-
tation. The fast pulses form the horseshoe-like structures, prop-
agating across the field and obliquely to it, while the slow waves
have the fork-like shape discussed above. In addition, the fast
and slow pulses propagate at different speed. Therefore, we can
easily distinguish between these two magnetoacoustic waves in
our study. The ratio of the maximum amplitudes of the veloc-
ity perturbations in the slow and fast waves is shown in Fig. 6.
The amplitude of the fast wave is about an order of magnitude
weaker than the amplitude of the slow wave. The relative am-
plitude of the fast wave grows with plasma-β. But, according to
Fig. 5, the area occupied by the fast wave is much larger than the
area of the slow wave. To estimate the partition of the energy in
the waves, we calculated the integrals:

E =
∫

S

∫ (
V2

x + V2
z

)
dxdz, (9)

over the regions S , occupied by the waves. The regions of inte-
gration are shown in Fig. 5. It is seen in Fig. 6 that the fraction of
the energy going to the fast wave is several times lower than the
fraction of the energy going to the slow wave. Like the ampli-
tude ratio, the energy ratio grows with plasma-β. This partition
of energy is a feature of the specific method of the wave excita-
tion. One can readily change this partition by exciting the waves
by, e.g., a pulse of a perpendicular velocity or the magnetic field
perturbation (see, e.g. Van Doorsselaere et al. 2008). However,
a detailed investigation of those scenarios is out of scope of this
study.

Fig. 5. Snapshot of the perturbation of V2
x + V2

z at t = 17.5 s, excited
by a temperature pulse for Ta = 0.1T0 located at top of the arcade. The
boxes show the regions occupied by the fast (solid line) and the slow
(dashed line) pulses, propagating in the positive directions of the z- and
x-axis, respectively.

Fig. 6. Ratio of kinetic energy (triangles) and maximum velocity per-
turbations

√
V2

x + V2
z (squares) in the excited fast and slow magnetoa-

coustic waves as a function of plasma-β. The results were obtained for
Ta = 0.1T0.

In contrast to the acoustic wave, in a plasma with finite
β slow magnetoacoustic waves perturb not only the plasma den-
sity �, temperature and the parallel component of the plasma ve-
locity Vx, but also the perpendicular components of the velocity,
and the magnetic field B. The latter is also associated with the
current density j.

Figure 7 shows snapshots of the mass density �, the x com-
ponent of velocity Vx (parallel to the field), the absolute value
of the magnetic field |B| and the current density jy (this compo-
nent of the current density is perpendicular to the plane of the
simulation), at time t = 50 s. The snapshots are shown after the
reflection, when the pulse returns back to the arcade apex. In
the figure the pulse propagates from right to left. The fork-like
structure is seen in all these physical quantities, hence it first
reaches the apex not at the point of the excitation, but at some
distance, which is determined by the perpendicular component
of the group speed. We demonstrated that there is a build-up of
the electric current density in the slow pulse, which can be re-
sponsible for the onset of current-driven plasma instabilities and
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Fig. 7. Snapshots of the perturbations of the mass density � (top left
panel), the parallel component of the velocity (top right panel), the ab-
solute value of the magnetic field |B| (bottom left panel) and the current
density j (bottom right panel) in a propagating slow magnetoacoustic
pulse. The pulse is shown at the time t = 67.5 s, after the reflection from
the arcade footpoint. The results were obtained for Ta = 0.1T0.

Fig. 8. Time profiles of the perturbations of mass density, magnetic in-
duction and current density in a slow magnetoacoustic pulse, measured
at x/L = 0.1 and z/L = 0.05 for different values of plasma β. The ini-
tial shape of the pulse is Gaussian. The solid (red) curve corresponds
to β = 0.3, dotted (blue) β = 0.43 and dashed (green) β = 0.59. The
results were obtained for Ta = 0.1T0.

hence the anomalous resistivity. Thus the impulsively excited
slow magnetoacoustic pulse can trigger another act of magnetic
reconnection and set up the next part of the chain of the process
proposed by Nakariakov & Zimovets (2011). The repetition of
this cycle is supposed to explain the observed post-flare arcade.
However, we stress that in our work we did not model the whole
chain of the processes.

Figures 8, 9 show a typical shape of the perturbations of
physical quantities in a slow magnetoacoustic pulse. Figure 8
illustrates the time profiles of the perturbed quantities for differ-
ent values of plasma-β. The perturbations of the mass density
�, the absolute value of the magnetic field |B| and the current
density j are measured in the vicinity of the apex, at the point
(x/L = 0.1, z/L = 0.1). The measurements were made before the
collision with the pulse, reflected from the opposite footpoint,
and approaching the apex from the opposite direction. The value
of jmax corresponds to the maximum current density obtained
for β = 0.59. Evidently, the slow magnetoacoustic waves propa-
gate faster and have a more pronounced “magnetic” component
for the higher value of β. Figure 9 shows similar time profiles,
but for different initial amplitudes. The shape of slow pulses
of higher amplitude experiences nonlinear steepening, and have
stronger perturbations of the current density.

Fig. 9. Similar to Fig. 8, but for different amplitudes of the initial pulse:
red (solid) line Ta = 0.1T0, blue (dotted) line Ta = 0.25T0 and green
(dashed) line Ta = 0.5T0.

Fig. 10. Snapshots of the parallel component of the velocity in a slow
magnetoacoustic pulse for two different amplitudes of initial perturba-
tion: Ta = 0.1T0 (left panel) and Ta = 0.6T0 (right panel). The snap-
shots were taken at t = 67.5 s, after the reflection of the pulse from the
right boundary, when the pulse was propagating to the left.

Figure 10 shows the effect of a finite amplitude on the two-
dimentional shape of the slow magnetoacoustic pulse. Snapshots
of the x-component of the velocity, taken at t = 67.5 s for two
different amplitudes of the initial perturbation, Ta = 0.1T0 (left
panel) and Ta = 0.6T0 (right panel) demonstrate that the fork-
like shape of the pulse of the higher amplitude tends to be more
triangular. The higher amplitude pulse is also wider in the trans-
verse direction, across the field.

3.2. Standing wave

Consider standing slow magnetoacoustic waves in a flaring ar-
cade, excited by a harmonic profile of the parallel velocity Vx
(see Fig. 11, top left panel). Such a perturbation corresponds to
the second spatial harmonics, which can be easily excited in a
one-dimensional model by a localised deposition of, e.g., plasma
heating (see, e.g. Tsiklauri et al. 2004). Initially, the perturbation
has a localised Gaussian shape in the perpendicular direction.

Figure 11 display the evolution of the parallel velocity, mass
density and current density in an initially localised standing
slow wave in the transverse direction. The standing perturbation
gradually progresses in the transverse direction, across the field,
forming an oscillatory structure. The flows quickly become anti-
parallel, forming a typical phase-mixing pattern. Current density
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Fig. 11. Evolution of a standing slow magnetoacoustic wave at an arcade. First panel: contour plots of the parallel velocity along the magnetic
field at the time t = 0. Second panel: contour plots of the parallel velocity at the time t = 1.75P, where P is the period of the oscillation. Third
panel: transverse structure of the parallel velocity perturbation at x/L = −0.75L (blue dotted line in second panel) at t = 1.75P (red solid line) and
x/L = 0.75L (red line in second panel) at t = 0.75P (blue dotted line). Fourth panel: transverse structure of the plasma density perturbation at the
apex of the arcade (black solid line in the second panel) at t = 2.0P. Fifth bottom panel: transverse structure of the current density perturbation at
the apex of the arcade (black solid line in the second panel) at t = 2.0P. The parameters of the pulse are A0 = 0.15VA, w = 0.1 L and z0 = 0.

Fig. 12. Transverse profiles of the mass density (top panel) and current
density (bottom panel) in a standing slow wave after two periods of
oscillations. The red (solid) line corresponds to the case with β = 0.3,
and the blue (dotted) line to β = 0.76. The dashed black lines show the
initial half-width of the pulse.

spikes are generated in the regions of the steep gradients of the
mass density. Thus, the 2D effects, associated with the pertur-
bation of the magnetic field, can occur to be non-negligible and
should be taken into account in the consideration of their dissi-
pation and observational manifestation.

Similar to the case of a propagating wave, the relative
strength of the magnetic component in the standing slow wave
is determined by the plasma-β. Figure 12 illustrates this effect
by showing the transverse profiles of the mass density and the
current density perturbations in the wave for two different val-
ues of plasma β. For a higher value of β the perturbations have a
broader extent across the field.

4. Summary and discussion

We performed a parametric study of running and standing broad-
band slow magnetoacoustic pulses in a magnetic arcade in
frames of ideal MHD. The arcade was modelled as a box filled
in with a uniform low-β plasma, penetrated by a constant and
straight magnetic field. At the boundaries of the box across the
field line-tying conditions were applied.

A slow magnetoacoustic pulse, excited by a localised in-
crease in the plasma temperature, propagates in both directions
along the magnetic field, and gradually develops in the direc-
tion across the field. The shape of the pulse becomes “fork-
like”, with obliquely extended prongs. The pulse shape is not
destroyed by the reflection from the arcade footpoints. The speed
of the propagation across the field is sub-sonic and sub-Alfvénic,
growing with the increase in plasma-β. This scenario is indepen-
dent of the position of the initial excitation. The speed of the
progression across the field was found to be qualitatively consis-
tent with the value obtained with analytical dispersion relations.
Quantitatively, the comparison being complicated with the am-
biguity is the definition of the pulse travel distance.

A slow magnetoacoustic pulse contains perturbations of the
magnetic field and the current density. The “magnetic compo-
nent” of the pulse grows with the increasing β. This component
has usually been ignored in the theoretical studies of slow mag-
netoacoustic waves in the corona, when the waves were consid-
ered in their degenerated, purely acoustic form (e.g. Nakariakov
et al. 2000, 2004; Ofman & Wang 2002; De Moortel & Hood
2004; De Moortel & Bradshaw 2008; Tsiklauri et al. 2004;
Taroyan et al. 2005; Taroyan & Bradshaw 2008). Our results
demonstrate that the magnetic component is an important part
of a localised, non-plane slow magnetoacoustic perturbation and
hence it should be taken into account in more rigorous studies.

Pulses of higher amplitude propagate faster in the parallel
and perpendicular direction and are subject to nonlinear steep-
ening and associated increase in the current density.

A spatially localised perturbation of plasma temperature ex-
cites slow and fast magnetoacoustic waves. Amplitude and en-
ergy of the excited fast wave are several times weaker than those
of the slow waves.

Slow magnetoacoustic standing waves are also found to be
subject to the progression across the field and development of
the “magnetic component” – the perturbations of the magnetic
field and the current density, more pronounced for higher β.
Moreover, the progression across the field is accompanied by
the generation of a phase-mixing pattern of anti-parallel field-
aligned flows. Possible implications of this effect on the dissi-
pation of the waves have been discussed in De Moortel et al.
(2004); Voitenko et al. (2005). However, in contrast with those
works, in our study phase-mixing appears in a medium, uniform
in the direction across the field. The formation of contour flows
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can also have interesting consequences in the manifestation of
standing slow magnetoacoustic waves in spectral observations.

The evolution of a slow magnetoacoustic pulse was found
to be well consistent with the model of the two-ribbon flare
evolution (Nakariakov & Zimovets 2011). Moreover, our study
demonstrates that the pulse could trigger another act of magnetic
reconnection through the perturbation of the plasma density and
the current density, the mechanisms developed in Chen & Priest
(2006) and Nakariakov et al. (2006) for the generation of quasi-
periodic pulsations observed in solar flares. However, the second
“building block” of the model, triggering of the other act of mag-
netic reconnection by the slow wave, was not addressed in the
present paper. We merely showed that a broadband slow magne-
toacoustic pulse can perform the transfer of energy and informa-
tion required for triggering the next energy release, across the
magnetic field at the group speed consistent with the observed
value.

Thus, two-dimensional effects on slow magnetoacoustic
waves are found to be important and hence should be taken into
account in the development of advanced low-dimensional mod-
els of propagating and standing coronal magnetoacoustic waves,
especially in hot flaring plasmas.
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